Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(16): 18051-18061, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680312

RESUMO

Sodium sulfate decahydrate (SSD) is a low-cost phase-change material (PCM) for thermal energy storage applications that offers substantial melting enthalpy and a suitable temperature range for near-ambient applications. However, SSD's consistent phase separation with decreased melting enthalpy over repeated thermal cycles limits its application as a PCM. Sulfonated polyelectrolytes, such as dextran sulfate sodium (DSS), have shown great effectiveness in preventing phase separation in SSD. However, there is limited understanding of the stabilization mechanism of SSD by DSS at the atomic length and time scales. In this work, we investigate SSD stabilization via DSS using neutron scattering and molecular dynamics (MD) simulations. Neutron scattering and pair distribution function analysis revealed the structural evolution of the PCM samples below and above the phase change temperatures. MD simulations revealed that water from the hydrate structure migrates from the hydrate crystal to the SSD-DSS interfacial region upon melting. The water is stabilized at this interface by aggregation around the hydrophilic sulfonic acid groups attached to the backbone of the polyelectrolyte. This architecture retains water near the dehydrated sodium sulfate, preventing phase separation and, consequently, stabilizing SSD rehydration. This work provides atomistic insight into selecting and designing stable and high-performance PCMs for heating and cooling applications in building technologies.

2.
iScience ; 26(7): 107175, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426345

RESUMO

Sodium sulfate decahydrate (Na2SO4.10H2O, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO2), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms. The ESC of PCMs deteriorated when thickeners, SPA, PPA, and CNF, were added. DSS-modified PCMs exhibited greater stability up to 150 cycles. Rheology measurements indicated that DSS did not impact SSD viscosity significantly during stabilization. Dynamic light scattering showed that DSS reduces SSD particle size and electrostatically suspends salt particles in a stable homogeneous solution, avoiding phase separation. This study proposes a promising method to improve the thermal stability of salt hydrate PCMs by utilizing polyelectrolyte-salt hydrate mixture for thermal energy storage applications.

3.
Soft Matter ; 16(7): 1760-1770, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859322

RESUMO

Photo-initiated thiol-ene click chemistry is used to develop shape memory liquid crystalline networks (LCNs). A biphenyl-based di-vinyl monomer is synthesized and cured with a di-thiol chain extender and a tetra-thiol crosslinker using UV light. The effects of photo-initiator concentration and UV light intensity on the curing behavior and liquid crystalline (LC) properties of the LCNs are investigated. The chemical composition is found to significantly influence the microstructure and the related thermomechanical properties of the LCNs. The structure-property relationship is further explored using molecular dynamics simulations, revealing that the introduction of the chain extender promotes the formation of an ordered smectic LC phase instead of agglomerated structures. The concentration of the chain extender affects the liquid crystallinity of the LCNs, resulting in distinct thermomechanical and shape memory properties. This class of LCNs exhibits fast curing rates, high conversion levels, and tailorable liquid crystallinity, making it a promising material system for advanced manufacturing, where complex and highly ordered structures can be produced with fast reaction kinetics and low energy consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...